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Abstract. We present a detailed model describing the effects of wire corrugation on the trapping potential
experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the
current distribution due to corrugation and then derive the corresponding roughness in the magnetic field
above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped
wire. We also present experimental data on micro wire traps using cold atoms which complement some
previously published measurements [11] and which demonstrate that wire corrugation can satisfactorily
explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present
measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of
gold. These wires appear to be substantially smoother than electroplated wires.

PACS. 39.25.+k Atom manipulation (scanning probe microscopy, laser cooling, etc.) – 03.75.Be Atom
and neutron optics

1 Introduction

Magnetic traps created by current carrying micro wires
have proven to be a powerful alternative to standard trap-
ping schemes in experiments with cold atoms and Bose-
Einstein condensates [1]. These so-called “atom chips”
combine robustness, simplicity and low power consump-
tion with strong confinement and high flexibility in the
design of the trapping geometry. Integrated atom optics el-
ements such as waveguides and atom interferometers have
been proposed and could possibly be integrated on a sin-
gle chip using fabrication techniques known from micro-
electronics. Quantum information processing with a single
atom in a micro trap has also been proposed [2].

Real world limitations of atom chip performance are
thus of great interest. Losses and heating of atoms due
to thermally exited currents inside conducting materials
composing the chip were predicted theoretically [3,4] and
observed experimentally soon after the first experimental
realizations of atomic micro traps [5,6].

An unexpected problem in the use of atom chips was
the observation of a fragmentation of cold atomic clouds in
magnetic micro traps [7,8]. Experiments have shown that
this fragmentation is due to a time independent roughness
in the magnetic trapping potential created by a distortion
of the current flow inside the micro wire [9]. It has also
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been demonstrated that the amplitude of this roughness
increases as the trap center is moved closer to the mi-
cro wire [10]. Fragmentation has been observed on atom
chips built by different micro fabrication processes using
gold [11] and copper wires [7,8], and on more macroscopic
systems based on cylindrical copper wires covered with
aluminum [10] and micro machined silver foil [12]. The ori-
gin of the current distortion inside the wires causing the
potential roughness is still not known for every system.

In a recent letter [11], we experimentally demonstrated
that wire edge corrugation explains the observed poten-
tial roughness (as theoretically proposed in [13]) in at least
one particular realization of a micro trap. In this paper, we
will expand on our previous work giving a more detailed
description of the necessary calculations as well as present-
ing a more complete set of experimental observations. We
emphasize that extreme care has to be taken when fab-
ricating atom chips, and that high quality measurements
are necessary to evaluate their flatness in the frequency
range of interest. We will discuss the influence of corru-
gations both on the edges as well as on the surface of the
wire and give scaling laws for the important geometrical
quantities like atom wire separation and wire dimensions.
We will also present preliminary measurements on wires
using improved fabrication techniques.

The paper is organized as follows. In Section 2, we give
a brief introduction to magnetic wire traps and empha-
size that the potential roughness is created by a spatially
fluctuating magnetic field component parallel to the wire.
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Fig. 1. Rectangular wire considered in this paper. The edge
roughness and the top surface roughness are illustrated in (c)
and (b) respectively.

In Section 3, we give a general framework to calculate the
rough potential created by any current distortion in the
wire. A detailed calculation of the current flow distortion
due to edge and surface corrugations on a rectangular wire
is presented in Section 4. In Section 5, we apply these cal-
culations to the geometry of a flat wire, widely used in
experiments. Edge and surface effects are compared for
different heights above the wire and we present impor-
tant scaling laws that determine the optimal wire size for
a given fabrication quality. In Sections 6 and 7, we show
measurements of the spectra of edge and surface fluctua-
tions for two types of wires produced by different micro
fabrication methods: optical lithography followed by gold
electroplating and direct electron beam lithography fol-
lowed by gold evaporation. We also present measurements
of the rough potential created by a wire of the first type
using cold trapped rubidium atoms.

2 Magnetic micro traps

The building block of atom chip setups is the so-called
side wire guide [1]. The magnetic field created by a straight
current carrying conductor along the z-axis combined with
a homogeneous bias field B0 perpendicular to the wire cre-
ates a two-dimensional trapping potential along the wire
(see Fig. 1). The total magnetic field cancels on a line lo-
cated at a distance x from the wire and atoms in a low field
seeking state are trapped around this minimum. For an in-
finitely long and thin wire, the trap is located at a distance
x = µ0I/(2πB0). To first order, the magnetic field is a
linear quadrupole around its minimum. If the atomic spin
follows adiabatically the direction of the magnetic field,
the magnetic potential seen by the atoms is proportional
to the magnitude of the magnetic field. Consequently, the
potential of the side wire guide grows linearly from zero
with a gradient B0/x as the distance from the position of
the minimum increases.

For a straight wire along z, all magnetic field vectors
are in the (x, y)-plane. Three dimensional trapping can be
obtained by adding a spatially varying magnetic field com-
ponent Bz along the wire. This can be done by bending the

wire, so that a magnetic field component along the central
part of the wire is created using the same current. Alter-
natively, separate chip wires or even macroscopic coils can
be used to provide trapping in the third dimension.

For a realistic description of the potential created by
a micro wire, its finite size has to be taken into account.
Because of finite size effects, the magnetic field does not
diverge but reaches a finite value at the wire surface. For
a square shaped wire of height and width a carrying a
current I, the magnetic field saturates at a value propor-
tional to I/a, the gradient reaches a value proportional to
I/a2. Assuming a simple model of heat dissipation, where
one of the wire surfaces is in contact with a heat reservoir
at constant temperature, one finds the maximal applica-
ble current to be proportional to a3/2 [14]. Therefore, the
maximal gradient that can be achieved is proportional to
1/

√
a. This shows that bringing atoms closer to smaller

wires carrying smaller currents still increases the magnetic
confinement, which is the main motivation for miniatur-
izing the trapping structures. However the magnetic field
roughness arising from inhomogeneities in the current den-
sity inside the wire also increases as atoms get closer to
the wire. This increase of potential roughness may prevent
the achievement of high confinement since the trap may
become too corrugated.

We emphasize that only the z-component of the mag-
netic field is relevant to the potential roughness. A vari-
ation of the magnetic field in the (x, y)-plane will cause
a negligible displacement of the trap center, whereas a
varying magnetic field component Bz modifies the longi-
tudinal trapping potential, creating local minima in the
overall potential [11].

3 Calculation of the rough magnetic field
created by a distorted current flow in a wire

In this section, we present a general calculation of the ex-
tra magnetic field due to distortions in the current flow
creating the trapping potential. By j we denote the cur-
rent density that characterizes the distortion in the cur-
rent flow. The total current density J is equal to the
sum of j and the undisturbed flow j0ez. As the longitu-
dinal potential seen by the atoms is proportional to the
z-component of the magnetic field, we restrict our cal-
culation to this component. We thus have to determine
the x- and y-components of the vector potential A from
which the magnetic field derives. In the following, we con-
sider the Fourier transform of all the quantities of interest
along the z-axis which we define by

Al,k(x, y) =
1√
2πL

∫
Al(x, y, z)e−ikz dz, (1)

where we have used the vector potential as an example
and l stands for x or y, L being the length of the wire. We
choose this definition so that the power spectral density of
a quantity coincides with the mean square of its Fourier
transform:

1
2π

∫
eikz〈Al(z)Al(0)〉 dz = 〈|Al,k|2〉. (2)
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The vector potential satisfies a Poisson equation with a
source term proportional to the current density in the
wire. Thus the Fourier component Al,k satisfies the fol-
lowing time independent heat equation

(
∂

∂x2
+

∂

∂y2

)
Al,k − k2Al,k = −µ0jl,k. (3)

where jl is one component of the current density j. In
the following, we use cylindrical coordinates defined by
x = r cos(ϕ) and y = r sin(ϕ). Outside the wire, the right
hand side of equation (3) is zero. The solution of this 2D
heat equation without source term can be expanded in a
basis of functions with a given “angular momentum” n.
The radial dependence of the solution is therefore a lin-
ear combination of modified Bessel functions of the first
kind In and of the second kind Kn. Thus expanding Al,k

on this basis, we obtain the following linear combination
for the vector potential

Al,k(r, ϕ) =
n=∞∑

n=−∞
cln(k)einϕKn(kr). (4)

We retain only the modified Bessel functions of the second
kind, since the potential has to go to zero as r goes to in-
finity. The cln(k) coefficients are imposed by equation (3),
and can be determined using the Green function of the 2D
heat equation [15]. We obtain

cln(k) = −µ0

2π

∫∫
In(kr) e−inϕjl,k(ϕ, r)rdrdϕ. (5)

Taking the curl of the vector potential and using the
relations K ′

n = −(Kn−1 + Kn+1)/2 and 2nKn(u)/u =
−Kn−1 + Kn+1, we obtain the z-component of the mag-
netic field from equation (4)

Bz,k = −k

2

∞∑
n=−∞

[
cyn−1(k) + cyn+1(k)

]
Kn(kr)einϕ

− i
k

2

∞∑
n=−∞

[
cxn−1(k) − cxn+1(k)

]
Kn(kr)einϕ. (6)

This expression is valid only for r larger than r0, the ra-
dius of the cylinder that just encloses the wire. At a given
distance x from the wire, we expect that only fluctuations
with wavelengths larger or comparable to x contribute to
the magnetic field, since fluctuations with shorter wave-
lengths average to zero. Therefore we can simplify expres-
sion (6) assuming we calculate the magnetic field above
the center of the wire (y = 0) for x much larger than r0.
The argument of In in equation (5) is very small in the
domain of integration and we can make the approximation
In(kr) � (kr)n/(2nn!). This shows that the cln coefficients
decrease rapidly with n. Keeping only the dominant term
of the series in equation (6), we obtain

Bz,k(x) � −cy0(k)
k

[
k2K1(kx)

]
. (7)
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Fig. 2. Scanning electron microscope images of micro fabri-
cated wires. Side view (a) and top view (b): electroplated gold
wire of width 50 µm and height 4.5 µm fabricated using optical
lithography. Side view (c): evaporated gold wire of width and
height 0.7 µm fabricated using electron beam lithography.

We will see in the next section that the first factor of this
expression, characterizing the distortion flow, is propor-
tional to the power spectral density of the wire corruga-
tion. The second factor peaks at k � 1.3/x justifying the
expansion. Fluctuations with a wavelength much smaller
or much larger than 1/x are filtered out and do not con-
tribute. As we approach the wire, more and more terms
have to be added in the series of equation (6) to compute
the magnetic field. We emphasize that the expressions de-
rived in equations (6) and (7) are general for any distorted
current flow that may arise from bulk inhomogeneities or
edge and surface corrugations.

4 Calculation of the distorted current flow
in a corrugated wire

We now turn to the calculation of the distortion in the
current flow due to wire edge and surface corrugations in
order to determine the associated cln coefficients. We sup-
pose the wire has a rectangular cross-section of width W0

and height u0 as shown in Figure 1. Let us first concen-
trate on the effect of corrugations of the wire edges, i.e. the
borders perpendicular to the substrate (model equivalent
to [13]). Figure 2 shows that, in our samples, these fluctu-
ations are almost independent of the x coordinate both for
wires deposited by electrodeposition and by evaporation.
We believe this result to be general for wires fabricated
by a lithographic process, since any defect in the mask or
in the photoresist is projected all along the height of the
wire during the fabrication process. Thus, in the follow-
ing, the function fr/l that describes the deviation of the
right (respectively left) wire edge from ±W0/2 is assumed
to depend only on z.

Conservation of charge and Ohm’s law give ∇J = 0
and J = −χ∇V where χ is the electrical conductivity
and V the electrostatic potential. We will make the ap-
proximation that χ is uniform inside the wire. In this
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case V satisfies the Laplace equation ∇2V = 0. As we
are interested in deviations from the mean current den-
sity j0 = I/(u0W0), we introduce the electric potential
v = V − j0z/χ which is equal to zero in the absence of de-
viations. From what we have said above, v only depends
on y and z and satisfies the 2D Laplace equation. The
boundary conditions for the current density on the wire
edge require the current to be parallel to the wire edge.
Thus v satisfies

dfr/l

dz
(z)

[
j0 − χ

∂v

∂z
(y = ±W0/2 + fr/l, z)

]
=

− χ
∂v

∂y
(y = ±W0/2 + fr/l, z). (8)

In the following we assume the amplitude of fr/l to be
small enough so we can make an expansion to first order
in fr/l of both terms. We then obtain a linear relation
between v(±W0/2, z) and fr/l(z) which in Fourier space
can be written as

ikj0fr/l,k = −χ
∂vk

∂y
(y = ±W0/2). (9)

The potential v satisfies the 2D Laplace equation, so the
k component vk(y) is a linear combination of e+ky and
e−ky. The two coefficients are imposed by the two bound-
ary conditions of equation (9). To complete the calcula-
tion of these two coefficients, we introduce the symmetric
component f+ = (fr + fl)/2 and antisymmetric compo-
nent f− = (fr −fl)/2 of the wire edge fluctuations. Going
back to the current density, we obtain

jy,k = ikj0

(
cosh(ky)

cosh(kW0/2)
f+

k +
sinh(ky)

sinh(kW0/2)
f−

k

)
. (10)

We note that the symmetric part (first term) of the cur-
rent deviation is maximal near the wire edges for compo-
nents with a wave vector large compared to 1/W0. On the
other hand, the components with a small wave vector are
constant over the width of the wire.

We now turn to the calculation of the current distor-
tions due to surface corrugation. We assume the bottom
surface to be flat, since the wire is supposed to be fabri-
cated on a flat substrate. We denote by fS the fluctua-
tions of the height of the wire from its mean value u0 (see
Fig. 1). We follow the same procedure as for the calcula-
tion of the effect of the wire edge fluctuations. Now v is
the electrical potential associated with the current density
j due to the surface corrugation. It depends on x, y and
z and satisfies the 3D Laplace equation. To first order in
fS , the boundary conditions of a current tangent to the
surface of the wire are




χ
∂v

∂x
(x = u0, y, z) + j0

∂fS

∂z
(z) = 0

χ
∂v

∂x
(x = 0, y, z) = 0

(11)

and
∂v

∂y
(x, y = ±W0/2, z) = 0. (12)

Symmetry arguments show that only the part of fS(y, z)
which is odd in y contributes to the magnetic field along
z in the plane y = 0. An even component of fS produces
currents which are symmetric under inversion with respect
to the plane y = 0. Therefore, they cannot contribute to
Bz in this plane. Thus, only the Fourier components

fSk,m
=

∫∫
dydz

π
√

2LW0

e−ikz sin(2mπy/W0)fS(y, z) (13)

contribute, where m = 1, ...,∞. With this definition,
fSk

(y) = 2
√

π/W0

∑∞
m=0 sin(2πmy/W0)fSk,m

. We choose
this definition of the Fourier component fSk,m

so that
〈|fSk,m

|2〉 is equal to the 2-dimensional spectral density of
fS. To obtain the electric potential produced by a given
component fSk,m

we use the expansion

sin(2mπy/W0) =
∞∑

p=0

γm,p sin((2p + 1)πy/W0), (14)

where

γm,p =
−8m

π

(−1)m+p

(2(m + p) + 1)(2(p − m) + 1)
, (15)

valid for y ∈ [−W0/2, W0/2]. Each p Fourier component
induces an electrical potential vk,m,p and, since v satisfies
the Laplace equation, vk,m,p is a linear combination of
e+νpx and e−νpx where νp =

√
k2 + ((2p + 1)π/W0)2. The

boundary conditions on the surfaces x = 0 and x = u0

determine the coefficients and we obtain

− χvk,m,p(x, y) =

ikj0fSk,m
γm,p

cosh(νpx)
sinh(νpu0)

1
νp

sin((2p + 1)πy/W0). (16)

With the choice of the expansion (14), the boundary con-
ditions on y = ±W0/2 are satisfied by each term. Finally,
we obtain the current density distribution



jxk,m
(x, y)= 2ikfSk,m

j0
√

π
W0

×∑∞
p=0

(
γm,p

sinh(νpx)
sinh(νpu0)

sin ((2p + 1)πy/W0)
)

jyk,m
(x, y)= 2ikfSk,m

j0
√

π
W0

×∑∞
p=0

(
γm,p

cosh(νpx)
sinh(νpu0)

(2p+1)π
νpW0

cos ((2p + 1)πy/W0)
)

.

(17)
The Fourier components jlk are obtained by summing
equation (17) for m = 1, ...,∞.

5 Rough potential of a ribbon shaped wire

In this section, we combine the results of the two pre-
vious sections to compute the z-component of the rough
magnetic field in the specific case of a flat rectangular
wire (u0 � W0). This simplification enables us to obtain
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analytical results for a system that is widely used in ex-
periments [8,12,16–19].

We do the calculation on the x-axis for x > W0/2
(and y = 0). Since the wire is considered flat, we replace
the volume current density j by a surface current density
σ =

∫
jdx. Then we can rewrite the cln coefficients of

equation (5) as

cln(k) = −µ0

2π
(−i)n

∫ W0/2

0

dyIn(ky)

× [σl,k(y) + (−1)nσl,k(−y)] . (18)

We will first study the effect of wire edge fluctuations and
give universal behaviors for the magnetic field roughness.
We will then concentrate on the effect of the top surface
roughness. We will compare the relative importance of the
two effects and point out important consequences for the
design of micro wires.

5.1 Effect of wire edge roughness

Let us first study the effect of wire edge fluctuations. Here
we derive the same results as [13] in a different way. Note
that, unlike the calculations in [13], the calculations pre-
sented here are only valid for distances from the wire larger
than (or equal to) W0/2. The expansion we use is never-
theless useful because it converges rapidly and permits
the determination of the magnetic field roughness for any
height larger than W0/2 after the calculation of a few pa-
rameters (the cn coefficients).

The distorted current flow has no component along
the x-axis. The expression of the rough magnetic field is
then given by the first sum of equation (6). Taking ϕ = 0,
we can rearrange this sum using the equalities Kn(kr) =
K−n(kr) and cy−n = (−1)ncyn (see Eq. (18)), we then
obtain

Bz,k = −k

∞∑
n=0

(cy2n(k) + cy2n+2(k))K2n+1(kr). (19)

Since only the cyn with even n contribute, we see from
equation (18) that only the symmetric part of the current
density participates to the magnetic field. This is what we
expect from a simple symmetry argument. For the cy2n

coefficients we obtain

cy2n = (−1)n+1 µ0I

πW0
ikf+

k

×
∫ W0/2

0

I2n(ky)
cosh(ky)

cosh(kW0/2)
dy. (20)

As pointed out in the previous section, the sum over the
angular momenta n in equation (19) converges rapidly
with n if x 	 W0. More precisely, the dominant term pro-
portional to K1(kx) gives the correct result within 10%
as soon as x > 1.5W0. As x approaches x = W0/2, more
and more terms contribute, for x = W0/2, 20 terms have
to be taken into account to reach the same accuracy.

kx
0 1 2 3 4 5 6 7 8

2 I) 0µ
/(4

 x2  π
 4×2 |

+ k
/f kz

|B

0

0.1

0.2

0.3

0.4

Fig. 3. Response function relating the magnetic field rough-
ness |Bzk |2 to the wire edge fluctuations |f+

k |2 (see Eq. (21)).
Plotted is the dimensionless quantity |Bzk/f+

k |2×4π2x4/(µ0I)2

as a function of kx where x is the height above the center of
the wire (y = 0). The different curves correspond to different
ratios x/W0 going from 0.5 to 4.7 in steps of 0.3. Small values
of x/W0 correspond to lower curves. The curve corresponding
to the limit given by equation (21) is also shown (dashed line).

We now derive the response function of the magnetic
field to the wire edge fluctuation for x > W0/2 which we
define as R(k, x) = |Bz,k/f+

k |2. As we already noticed in
the previous section, far away from the wire (x 	 W0),
only wave vectors k � 1/W0 are relevant. Then we can
approximate the integral in equation (20) by expanding
the integrand to zeroth order in ky. Keeping the dominant
term in the series that defines the magnetic field, we obtain
the following expression for the response function

R(k, x) � (µ0I)2

4π2x4
(kx)4K2

1 (kx). (21)

For a given height x, as k increases, this function increases
from zero as k2, peaks at k = 1.3/x and finally tends ex-
ponentially to zero. This behavior can be understood as
follows. At low wave vectors, the angle between the direc-
tion of the distorted current flow and the z-axis tends to
zero, thus the contribution of these components becomes
negligible. At high wave vectors, fluctuations with a wave
length shorter than the distance to the wire average to
zero.

To check the validity of equation (21), we plot the di-
mensionless function R(k, x)/[(µ0I)2/(4π2x4)] for differ-
ent ratios x/W0 in Figure 3. The limit function corre-
sponds to a configuration where the distorted current flow
is concentrated on the line x = y = 0. For a smaller dis-
tance from the wire, the finite width of the wire becomes
important and R(k, x) differs from the expression (21).
The amplitude is smaller and the peak is shifted to a lower
frequency. These effects are due to the fact that as x de-
creases, the distance to the borders of the wire decreases
less rapidly than the distance to the central part of the
wire because of the finite width of the wire. Furthermore,
because corrugations of high wave vector produce a cur-
rent density localized near the wire border, their decrease
in amplitude is more pronounced.
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Fig. 4. Magnetic field fluctuations 〈B2
z 〉 as a function of the

height above the wire (y = 0). Plotted is the dimensionless
quantity 〈B2

z〉W 5
0 /((µ0I)2J+

e ), where 〈B2
z 〉 is the magnetic field

roughness and Je is the spectral density of the wire edges as-
sumed to be white, as a function of x/W0 where x is the height
above the the wire [20]. Dashed line: 1/x5 law given by equa-
tion (22).

Assuming a white power spectrum of the wire edge
corrugations with a spectral density J+

e , we can integrate
the equation (21) over the whole spectral range [20]. We
then find the following scaling law for the rms fluctuations
of Bz with the atom-wire distance x:

〈B2
z〉 = J+

e

(µ0I)2

x5
0.044. (22)

This expression is valid for x 	 W0, the numerical fac-
tor has been found by a numerical integration of equa-
tion (21). Figure 4 shows that this expression is valid
within 10% as soon as x > 2W0. For smaller distances
x, the fluctuations of magnetic field increase more slowly
and tends to a constant. The points corresponding to
x < W0/2 lie outside the range of the previous calcula-
tion and their values have been obtained by a numerical
integration for each x. Note that here J+

e is the spectral
density of f+. For edges with independent fluctuations,
J+

e = Je/2 where Je is the spectral density of each wire
edge. The asymptotic behavior of 〈B2

z 〉 was first derived
in [13].

5.2 Effect of top surface corrugation

We now consider the effect of corrugations of the top sur-
face of the wire. As shown in equation (17), it induces both
a current along the x- and y-direction. The surface current
densities obtained by integration over x have remarkably
simple forms. We find

σyk,m
= σ(1)

yk,m
+ σ(2)

yk,m
(23)

where


σ
(1)
yk,m = 2ikfSk,m

j0
√

π
W0

2πm
κ2W0

cos(2πmy
W0

)

σ
(2)
yk,m = −2ikfSk,m

j0
√

π
W0

2πm
κ2W0

(−1)m cosh(ky)
cosh(kW0/2)

(24)

and κ =
√

k2 + (2mπ/W0)2. In the calculation of σxk,m

the summation over p is not analytical. However, as we
consider wires with u0 � W0, one can make the approxi-
mation (cosh(νpu0) − 1)/sinh(νpu0) � νpu0. We then ob-
tain

σxk,m
= ikfSk,m

j0

√
π

W0
u0 sin(2mπy/W0). (25)

Comparing equation (25) and equation (24), we see that
the current density along x is much smaller than the cur-
rent density along y provide κ � 1/u0 (i.e. small wave
vectors both along y and z).

Within our flat wire approximation, where only dis-
tances from the wire x 	 u0 are considered, this is always
the case. In the following we therefore only consider the
effect of the current density along y. For x ≥ W0/2, the
rough magnetic field is then given by equation (19).

Assuming a white power spectrum for the surface
corrugation of spectral density JS , we now derive some
properties of the rough magnetic field [20]. For large dis-
tances above the wire (x 	 W0), only k-components much
smaller than 1/W0 are relevant. Then, as we have already
shown, the cln coefficients decrease rapidly with n and the
dominant contribution is given by cy0 . To lowest order in
ky, cy0 is proportional to the total current

∫ W0/2

−W0/2 σy(y)dy.

Thus, the only contribution comes from σ
(2)
yk,m . Then, cal-

culations similar to those presented in the previous section
show that the contribution to 〈B2

z 〉 of the Fourier compo-
nent m of fSk

is

〈B2
z,m〉 = Js

W0

πu2
0

1
m2

(µ0I)2

x5
0.044 (26)

where Js is the 2-dimensional spectral density of fS . As
expected it decreases with m as the contribution of rapidly
oscillating terms averages to zero for large distances. Com-
puting the sum over m > 0 gives the scaling law for
the rms fluctuation of Bz due to surface corrugation with
atom-wire distance x:

〈B2
z〉 = Js

W0

u2
0

π

6
(µ0I)2

x5
0.044 (27)

In Figure 5 this expression is compared to numerical calcu-
lations based on equation (24). The terms σ

(2)
yk,m contribute

at least 90% of 〈B2
z〉 as soon as x > W0.

Comparing edge and surface corrugation, we see that
for large distances, both effects scale in the same way (see
Eqs. (22) and (27)). However, at short distances from the
wire, the amplitude of the magnetic field roughness pro-
duced by surface corrugation does not saturate. Indeed,
although the contribution of σ

(2)
yk,m saturates in the same

way as the effect of wire edge fluctuations, the contribution
of σ

(1)
yk,m to the current density diverges as one gets closer

to the wire. Thus at small distances from the wire, we ex-
pect surface roughness to become the dominant source of
magnetic field fluctuations.
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Fig. 5. Longitudinal magnetic field fluctuations 〈B2
z〉 pro-

duced by white noise top surface wire roughness as a function
of x/W0 (y = 0) [20]. Plotted is the dimensionless quantity
〈B2

z〉/(JS(µ0I)2/(u2
0W

4
0 )). The dashed lines represents equa-

tion (27).

5.3 Consequences for micro wire traps

The scaling laws (22) and (27) are of major importance as
they impose strong constrains in the use of micro traps.
As mentioned in Section 2, high magnetic field gradients
are achieved with small wires and short distances. But as
the distance to the wire decreases, the roughness in the
magnetic trapping potential increases. Imposing a maxi-
mal roughness ∆Bmax tolerable in an experiment there-
fore directly determines the maximal transverse gradient
accessible with a given realization of a micro wire.

More precisely, as mentioned in Section 2, the maxi-
mal current in a micro wire is limited by heat dissipation:
Imax = ξW0u

1/2
0 [14]. To analyze the scaling of the sys-

tem, we consider the trap center at a distance comparable
to the wire width x � W0 and a wire height u0 small and
constant. For a given fabrication technology, we expect the
wire roughness to be independent of the wire dimensions
W0 and u0 and we assume white noise spectral densities
Je and JS for the edge and top surface corrugations [20].
Using the above expressions for x and I and equations (22)
and (27), we obtain the following scaling laws

〈B2
edge〉 =

Jeµ
2
0κ

2u0

W 3
0

〈B2
surf〉 =

π

6
JSµ2

0κ
2

W 2
0 u0

(28)

for the magnetic field fluctuations induced by the edge
and the surface roughness respectively. Imposing magnetic
field fluctuations smaller than ∆Bmax determines a min-
imal wire width W0,min and the maximal transverse gra-
dient ∇Bmax. If the potential roughness is dominated by
effects due to wire edge corrugation, we find:

W0,min =
(

Jeµ
2
0κ

2u00.044
∆B2

max

)1/3

∇Bmax =
1
2π

(
µ0κ

√
u0∆B2

max

Je0.044

)1/3

. (29)

For a potential roughness dominated by effects due to wire
top surface corrugation, we find:

W0,min =
(

π

6
JSµ2

0κ
20.044

∆B2
maxu0

)1/2

∇Bmax =
1
2π

(
u0∆Bmax

JS
π
6 0.044

)1/2

. (30)

As will be described in the following section, a micro wire
fabricated by electroplating presents an edge roughness
of Je � 0.1 µm3. Assuming a wire without top surface
roughness, a wire height of u0 = 5 µm, a typical ξ = 3 ×
107 Am−3/2 and imposing a maximal potential roughness
of ∆Bmax = 1 mG, the wire width is limited to W0,min �
700 µm, the maximal gradient will be ∆Bmax � 0.2 T/cm.

6 Probing the rough magnetic potential
with cold atoms

In a previous letter [11], we described measurements of the
magnetic field roughness produced by a current carrying
micro fabricated wire. The basic idea is to use the fact that
the longitudinal density n(z) of atoms along the wire, is
related to the longitudinal potential seen by the atoms
through a Boltzmann factor:

n(z) ∝ e−V (z)/kBT . (31)

As discussed in Section 2, the potential V (z) is propor-
tional to the z-component of the magnetic field a the cen-
ter of the trapping potential. Our typical thermal energy,
1 µK, corresponds to a magnetic field of 15 mG for a
87Rb atom in the F = 2, mF = 2 state. Since longitudinal
density variations of order 10% are easily visible in our
experiment, we are sensitive to variations in the magnetic
field at the mG level.

The micro wire we used to create the magnetic po-
tential is a 50 µm wide electroplated gold wire of 4.5 µm
height (see Fig. 2). The process of micro fabrication is
the following: a silicon wafer is first covered by a 200 nm
silicon dioxide layer using thermal oxidation. Next, seed
layers of titanium (20 nm) and gold (200 nm) are evap-
orated. The wire pattern is imprinted on a 6 µm thick
photoresist using optical UV lithography. Gold is electro-
plated between the resist walls using the first gold layer
as an electrode. The photoresist is then removed, as well
as the gold and titanium seed layers. Finally the wire is
covered with a 10 µm layer of BCB resin and a 200 nm
thick layer of evaporated gold. The gold surface acts as a
mirror for a magneto-optical trap. The procedure for de-
ducing the potential roughness from images of the atomic
cloud is complex and we refer the reader to [11].

Figure 6 shows the measured longitudinal potential for
various distances above the wire. We also show the power
spectral density of these potentials in Figure 7. A region
of 1.6 mm along the wire is explored by the atoms. To esti-
mate the power spectral density of the potential roughness
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Fig. 6. Rough magnetic field Bz(z) normalized to the cur-
rent in the micro wire. Solid lines: magnetic field measured
using cold atomic clouds. Dashed lines: magnetic field calcu-
lated from the measured corrugation of the edges of the wire.
The different curves have been vertically shifted by 0.1 G/A
from each other and heights above the wire are indicated on
the right.
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Fig. 7. Spectral density of the magnetic field roughness for
different heights above the wire. The points represent experi-
mental data. The curves result from the calculations detailed in
the text. Solid curves: expected noise due to wire edge rough-
ness. We used the power law fit to the spectral density of the
wire border fluctuations. Dashed curves: expected noise due to
top surface roughness.

we divide the total window in three smaller windows over-
lapping by 50% [21]. In each window, the Fourier trans-
form of the potential is computed after multiplication with
a Hamming window and the estimate of the spectral den-
sity is the average of the square of the Fourier transforms.

In Figure 7, a flat plateau is visible at the highest wave
vectors (e.g. k > 0.07 µm−1 at 46 µm and k > 0.04 µm−1

at 80 µm). The level of this plateau depends on experi-
mental parameters such as the temperature and density of
the atom cloud. On the other hand the spectral density at
low wave vectors, i.e. in the region where it rises above the
plateau, is independent of these parameters. This obser-
vation leads us to conclude that while the low wave vector
part of the spectrum corresponds to a potential seen by
the atoms, the plateau at high wave vectors is due to in-
strumental noise in our imaging system, such as fringes.
We expect it to vary in a complex way with tempera-
ture and atom density. Qualitatively, smaller atom-wire
distances, which are analyzed with higher temperature
clouds, should result in higher plateaus. This tendency
is indeed observed in Figure 7.

To measure the wire corrugations, we removed the
atom chip from vacuum and etched off the gold mirror
and the BCB layer. We analyzed the bare wire with scan-
ning electron microscopy (SEM) and with atomic force
microscopy (AFM) techniques. The function f describ-
ing the edge corrugation is extracted from SEM images
such as Figure 2b. Rms deviations of the edges are as
small as 200 nm, and we use a 50 µm × 50 µm field
of view in order to have a sufficient resolution. We use
66 overlapping images to reconstruct both wire edges over
the whole wire length of 2.8 mm. We identify no corre-
lation between the two edges. The spectral density ob-
tained for f+ = (fl + fr)/2 is plotted in Figure 8. We
see two structures in the spectrum: first, we observe fluc-
tuations with a correlation length of 0.2 µm and 100 nm
rms amplitude. It corresponds to the fluctuations seen in
Figure 2b which are probably due to the electrodeposi-
tion process. Second, roughness with low wave vectors is
present and raises significantly the power spectral den-
sity in the 0.01−0.1 µm−1 range. For the spectral range
0.01−1 µm−1, the wire border fluctuations are well fitted
by a power law J = 3.2 × 10−6k−2.15 + 8.2 × 10−4 µm3

as seen in Figure 8. We use this expression to compute
the spectra shown in Figure 7. As we measured f over the
whole region explored by the atoms, we can not only com-
pare the spectral densities of the magnetic field roughness
but we also can compare the direct shape of the magnetic
field Bz(z). This is done in Figure 6 where the magnetic
field, computed from f as described in the previous sec-
tions, is shown by dashed lines. We note that no adjust-
ment has been applied to superimpose the two curves, the
absolute position of the atoms with respect to the wire is
known to the 3 µm resolution of our imaging system.

A different approach is possible to check consistency
between the wire edge measurements and the potential
roughness measured with cold atoms. As seen in equa-
tions (19) and (20), |Bz,k(x)|2 = J+

e R(k, x), where the re-
sponse function R(k, x) does not depend on the wire edge
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Fig. 8. Measured spectral density of the edge roughness of the
electroplated wire (upper curve) and of the evaporated wire
(lower curve). For the electroplated wire, the spectral density
of f+ = (fl + fr)/2 is plotted. For the electroplated wire, Jf/2
is plotted, where Jf is the spectral density of a single border
of the wire, as expected for the spectral density of f+ for in-
dependent wire border fluctuations. The crosses indicate edge
roughness for different k vectors reconstructed from the decay
of the corresponding roughness measured with the atoms. The
solid line is a polynomial fit to characterize the edge roughness
in the region of interest.

roughness. We compute R(k, x) using the expansion (19)
and for a given k-component, we deduce J+

e by fitting
the decay of |Bz,k(x)|2 with height (see Fig. 7). In Fig-
ure 8, the values of J+

e obtained by such a procedure are
compared to the function J+

e measured with the electron
microscope. We find good agreement.

The corrugation of the top surface of the wire is mea-
sured using an AFM and the observed power spectral
density is plotted in Figure 9. The spectrum is flat for
wave vectors smaller than 1 µm−1 with a value JS =
1.6×10−3 µm4. Unfortunately, we were not able to obtain
the spectrum for very long wave vectors. For purposes of
calculation, we shall simply assume that the spectral den-
sity below 0.1 µm−1 has the same value as between 0.1 and
1 µm−1. The result of this calculation is plotted Figure 7
(dashed lines).

Our results indicate that the magnetic field roughness
measured with cold atoms is explained by wire corruga-
tion. At low wave vectors (k < 0.04 µm−1), it seems that
the magnetic field roughness is primarily due to edge cor-
rugations. The good agreement between the observed field
and the calculation shown in Figure 6 are the strongest
evidence for this conclusion. For wave vectors larger than
about 0.5 µm−1, the corrugations of the top surface are
expected to contribute as strongly as those of the edges.
This wave vector regime however, is not being stringently
tested by our data. Since we have no data on surface cor-
rugation at wave vectors below 0.1 µm−1, it is possible
that the contribution from this effect is larger than shown
in Figure 7. The atom data in the figure however, indicate
that the surface effect is not the dominant one although

)-1 mµ (zk
1 10

)4
 mµ

 (2 |
,1 z

k
S
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-410
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Fig. 9. Power spectral density of the wire top surface rough-
ness measured with an AFM. We plot the spectral density cor-
responding to the transverse mode m = 1 (ky = 2π/W0) which
is the first one to contribute to magnetic field roughness. The
horizontal line indicates the mean value for kz ranging from
0.2 µm−1 to 1 µm−1.

given our signal-to-noise it could be of comparable mag-
nitude.

Figure 2b also suggests that there might be a grain
structure in the bulk of the wires: we have no additional in-
formation on possible current deviations due to this effect,
but the success of the model based on wire edge roughness
seems to indicate, that it is not important in our system.

7 Improved fabrication process for micro
wires

The fabrication technology described above limits us to
atom wire separations greater than several tens of mi-
crons if we want to obtain a reasonably smooth potential.
In order to improve the quality of our wire, we turn to a
different micro fabrication process similar to [22]: the wire
structures are patterned onto an oxidized silicon wafer us-
ing electron beam lithography. We use gold evaporation
and a standard lift-off technique to obtain 700 nm square
cross-section wires as shown in Figure 2c.

We extract the wire border roughness from SEM im-
ages and the obtained power spectral density is plotted in
Figure 8 (lower curve). In the spectral range studied, the
roughness is greatly reduced compared to the first fabrica-
tion process. This was expected as the grain size of evapo-
rated gold is much smaller than of electroplated gold. Un-
fortunately, we do not have a quantitative measurement
of the power spectral density in the 0.01−0.1 µm−1 range.
Indeed, as we had to reduce the field of view to increase the
resolution, it becomes very difficult to overlap hundreds of
SEM pictures without adding spectral components due to
stitching errors. We still hope to also have reduced the
wire edge roughness in this frequency domain, as it has
been demonstrated recently by the Heidelberg group [23]
using similar wires.

Gold evaporation produces surfaces of optical quality
at visible light. Thus the roughness of the top surface of
the evaporated wire is expected to be much smaller than
that of an electroplated wire.
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8 Conclusion

Our goal in this paper has been to give a more detailed de-
scription of the work which led to our conclusion that wire
corrugations can account for the magnetic field roughness
typically observed in atom chip experiments. We wish to
emphasize in this paper that great care must be taken to
characterize the roughness of a micro fabricated wire. The
ratio of the rms roughness to the wavelength of the im-
perfections is below 10−4. Thus a single microscope image
cannot reveal the imperfections.

The model we use has already been suggested in ref-
erence [13]. Here we have given more details of the calcu-
lation as well as some physical arguments explaining the
results. We have also extended the calculation to include
the effects of corrugations of the top surface of the wire.
The top surface corrugations become increasingly impor-
tant as the distance to the wire decreases, while the effect
due to wire edge roughness saturates.

Equations (22) and (27), giving the behavior of the
magnetic field roughness due to edge and surface corru-
gation as a function of height, are important scaling laws
that one should keep in mind in the design of atom chips.
The requirements of small roughness and high transverse
confinement impose a tradeoff in choosing a wire size for
a given fabrication quality. We do not believe however
that we are at the end of our progress in improving the
fabrication technology. Thus sub-micron scale atom chips
continue to hold out much promise for the manipulation
of ultra cold atoms.

We thank David Hermann for help in calculations. This work
was supported by the E.U. under grant (IST-2001-38863 and
MRTN-CT-2003-505032), as well as by the DGA (03.34.033).
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